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6. Texture, colour, stereo, and motion descriptors. Disambiguation.
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Disambiguation

1. The nature, geometry, and wavelength composition of the illuminant(s).

2. Properties of the objects imaged, such as: spectral reflectances; surface
shape; surface albedo; surface texture; geometry, motion, and rotation
angle.

3. Properties of the camera (or viewer), such as (i) geometry and viewing
angle; (ii) spectral sensitivity; (iii) prior knowledge, assumptions, and
expectations.
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Texture

What defines a texture?

Trevor Darrell Dr Chris Town

Includes: more regular patterns

Trevor Darrell Dr Chris Town

Includes: more random patterns

Trevor Darrell
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Scale: objects vs. texture

Often the same thing in the world can occur as
texture or an object, depending on the scale we
are considering.
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Inferring surface orientation from texture

->the assumption of uniformity constrains the problem
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Inferring surface orientation from texture
-

Lobay+Forsyth, 06
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Inferring surface orientation from texture

Inferring surface orientation from texture
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The Visual Cliff, by William Vandivert, 1960
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Texture

Texture is defined by the existence of certain statistical
correlations across the image.

Examples:

* quasi-periodic undulations (waves, ripples, folds in clothing)
* spots, speckles

* stripes, dashes

Many natural textures can appear to be almost fractal, i.e. self-
similar across different scales.

The unifying notion in all of these examples is quasi-periodicity,
or repetitiveness, of some features.
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So, What Scale to Choose?

* It depends on what we're looking for...

v

» Too fine a scale... can’t see the forest for the trees.
» Too coarse a scale... can't tell the maple from the cherry.

| Slidecredit:K. Grauman Dr Chris Town




Texture

* Textures are made up of repeated sub-elements

* Representation:
— find the sub-elements, and represent their statistics

¢ Butwhat are the sub-elements, and how do we find and
characterise them?
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Texture

Fourier methods: capture quasi-periodicity at different scales and
orientation, but have non-localised (global) response

Gabor wavelets: spatially localised, so we can analyse texture in
terms of local spectral analysis
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A simple texture descriptor

Magnitude of the Fourier Transform
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Magnitude of the Fourier Transform encodes unlocalised information
about dominant orientations and scales in the image.

ATorralba Dr Chris Town

Statistics of Scene Categories

Man-made environments

Spectral signature of man-made environments

Natural environments
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Oliva etal (99), Oliva & Torralba (01)

Look at Mumford’s work farGhaddiewn

Gist descriptor

Oliva and Torralba, 2001

* Apply oriented Gabor filters
over different scales

* Average filter energy

in each bin

8 orientations
4 scales
x16 bins
512 dimensions

M. Gorkani, R. Picard, ICPR 1994; Walker, Malik. Vision Research 2004; Vogel et al. 2004;
Fei-Fei and Perona, CVPR 2005; S. Lazebnik, et al, CVPR 2006; ... .
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Example visual gists

Global features (I) ~ global features (I”) Br.Chris.Town




Texture characterisation using
filters
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Region segmentation

-> perceptual grouping
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Region segmentation using Gabor Wavelets

Oriented (or “steerable”) pyramids

* Laplacian pyramid is orientation independent

* Applyan oriented filter to determine orientations at each layer
— this represents image information at a particular scale and orientation
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Laplacian Pyramid Oriented Pyramid
Dr Chris Town Computer Vision - A Modern Approach; DA. Forsyth Dr Chris Town
Filter Kernels
Coarsest .scalen

But we need to get I
rid of the corner mage ¢
regions before
starting the recursive
circular filtering Finest scale

Figure 1. Idealized illustration of the spectral

decomposition performed by a steerable pyra-

mid with £ = 4. Frequency axes range from

—m to w. The basis functions are related by

translations, dilations and rofations (except for

the initial highpass subband and the final low-

pass subband). For example, the shaded region

corresponds to the spectral support of a single Reprinted from “Shiftable MultiScale Transforms,” by Simoncelli et al., IEEE Transactions

(vertically-oriented) subband. on Information Theory, 1992, copyright 1992, IEEE

+//www.cns.nyu.edu/ftp, " olli Simoncelliand Freeman, ICIP 1995

hue: 11950.pdf Dr Chris Town Computer Vision - A Modern Approach; DA. Forsyth Dr Chris Town




Steerable filters

“Steerability”-- the ability to synthesise a filter of any orientation from a
linear combination of filters at fixed orientations.

The basis functions of the steerable pyramid are directional derivative
operators, that come in different sizes and orientations.

0° 90° Synthesized 30°
. u ! u
Response: l l l

Raw Image

ofClclc

Taken from:
W.Freeman,T. Adelson, “The Design
and Useof SterrableFilters”, IEEE
Trans. Patt, Anal. and Machine Intell.,
vol 13,49, pp 891-900,5ept 1991
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Texture representation

* Form an oriented pyramid (or equivalent set of responses to
filters at different scales and orientations).

* Square the output (modulus)

* Take statistics of responses
— Mean of each filter output (e.g. are there lots of spots?)
— Standard deviation of each filter output (e.g. are the spots of similar size?)
— Mean of one scale conditioned on other scale having a particular range of
values (e.g. are the spots in straight rows?)

Computer Vision - A Modern Approach; D.A. Forsyth Dr Chris Town

Texture synthesis

* Model texture as generated from random process.

* Discriminate by seeing whether statistics of two processes seem
the same.

* Synthesize by generating image with same statistics.

Dr Chris Town

Computer Vision - A Modern Approach; D.A. Forsyth

Texture synthesis
block

Input texture

.

B1 B2 B1 B2 B1 /) B2
Random placement Neighboring blocks Minimal error
of blocks constrained by overlap boundary cut

Dr Chris Town

Dr Chris Town

Statistical in-fill
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Slide from Alyosha Efros, ICCV 1999




Texture analysis

Input texture
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(Steerable pyr; Freeman & Adelson, 91)

The texture is represented as a collection of
marginal histograms.
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Texture synthesis

Heeger and Bergen, 1995
(histogram)

Input texture

= Dr Chris Town

Inferring Object Colour

e Let I(\) represent the wavelength composition of the illuminant (i.e. the
amount of energy it contains as a function of wavelength A, across the
visible spectrum from about 400 nanometers to 700 nm).

Let O(A) represent the inherent spectral reflectance of the object at a
particular point: the fraction of incident light that is s
its surface there, as a function of the incident light’s wavelength A.

attered back from

Let R(A) represent the actual wavelength mixture received by the camera
at the corresponding point in the image of the scene.

Tadenm A Foonm  100am. A FoCam
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Inferring Object Colour

Clearly, R(\) = I(A)O()). The problem is that we wish to infer the “object
colowr” (its spectral reflectance as a function of wavelength, O(A)), but we
only know R()), the actual wavelength mixture received by our sensor. So
unless we can measure () directly, how could this problem of inferring O(\)
from R(A) possibly be solved?

oy I

Tadenm A Foonm  100am. A FoCam
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Inferring Object Colour

Measuring 1())

Search for highly specular (shiny, metallic, glassy) regionsin an
Then we could infer O by dividing R by .

Problems:

* We may not find any specular surfaces in the image

* Most materials are not purely specular(e.g. metals which
have a brassy colour)

* Not robust, too dependent on highly localised
measurements
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Colour Constancy

These images show a bowl of fruit photographed in three lighting conditions:
« artificial light (left)

« hazy daylight (middle)

« clear blue sky (right)

Notice the marked variation in colour balance caused by the spectral properties of
the illuminant. We are not normally aware of this variation because colour
constancy mechanisms discount illumination effects

http://www.psypress.co.uk/mather/resources/topic.asp?topic=ch12-tp-04 Dr Chris Town




Colour Cube lllusion
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D. Purves, R. Beau Lotto, S. Nundy “Why We See What We do,” American Scientist Ui winio TOWN

Colour Constancy in Goldfish

In David Ingle's experiment, a goldfish has been trained to swim to a patch of a given
color for a reward—a piece of liver. It swims to the green patch regardless of the
exact setting of the three projectors' intensities. The behavior is strikingly similar to
the perceptual result in humans.

http://neuro.med.harvard.edu/site/dh/bds htm Dr Chris Town

Colour Constancy

Possible explanations:

Local colour contrast— cone excitation level of one surface relative to another
remains constant when both surfaces experience the same change in illumination.
->Relative cone excitation levels are invariant ratios

Colour adaptation—reduces the contribution from the source illumination by
lowering activity in the most highly active cone classes.

Global contrast—global spectral changes generally represent changes in the
illuminant; localised differences usually correspond to reflectance differences.

Range of reflected spectrum—gives some indication of the breadth of the
illuminating spectrum.

Colour constancy is not perfect (83% accuracy), and the most powerful cue to
constancy is local colour contrast.

http://www.psypress.co.uk/mather /topic.asp?topic=ch12-tp-04 Dr Chris Town

Retinex

E.H.Land, J.J. McCANN - Journal of the Optical society of America, 1971

Journal of the

OPTICAL SOCIETY
of AMERICA

VoLuMe 61, NUMBER 1 Janvary 1971

Lightness and Retinex Theory
Epwix H. LaND* AND Jomy J. McCaxy

Palaroid Corporation, Camlridge, Mossachusels 02139
(Received 8 September 1970)
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Retinex

The key idea is that the colours of objects or areas in a scene are determined
by their surrounding spatial context. A complex sequence of ratios computed
across all the boundaries of objects (or areas) enables the illuminant to be
algebraically discounted in the sense shown in the previous Figure, so that ob-
ject spectral reflectances O(A) which is what we perceive as their colour, can
be inferred from the available retinal measurements R(A) without explicitly
knowing I(A).

Dr Chris Town

Retinex

Reflectance tends to be constant across space except for abrupt
changes at the transitions between objects.

Thus a reflectance change shows itself as step edge in an image,
while illuminance changes gradually over space.

By this argument one can separate reflectance change from

illuminance change by measuring the response to spatial
derivatives.

Dr Chris Town




Retinex Retinex

Log Im:

Image Column
(b) The derivative of the plot  (c) The estimate of the log
shading From M. Tappen, PhD

Image Column Image Column

(a) One column from the ob-
served image. from (a).

Again, we are trying to solve an ill-posed problem :
I ® [1-1] =—> 7 .

® [1-1 —> "'7
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From M. Tappen,
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From M. Tappen,

- Stereo
What Is Stereo Vision? _ o
Important information about depth can be obtained from the use of two (or
.G . bl P |ation: gi li £ th more) cameras, in the same way that humans achieve stereoscopic depth vision
eneric problem formulation: given several Images ot the same by virtue of having two eyes. Objects in front or behind of the point in space at

which the two optical axes intersect (as determined by the angle between them,
which is controlled by camera movements or eye movements), will project into
different relative parts of the two images. This is called stereoscopic disparity.

object or scene, compute a representation of its 3D shape

= e I__L V-

Dr Chris Town
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Slide credit: Svetlana Lazebnik, Steve Seitz

Pinhole Camera i |

f (focal length)

image
plane

d=fb/(a+p)

pinhole .-~ virtual
image

Dr Chris Town

47 br Chris Town

Source: Forsvth & Ponce



This “error signal” becomes greater in proportion to the distance of the ob-
ject in front or behind the point of fixation, and so it can be calibrated to
obtain a depth cue. It also becomes greater with increased spacing between
the two eyes or cameras, since that is the e of triangulation.” (That is why
WWTI armies introduced V-shaped binocular “trench periscopes” to increase
stereoscopic visual acuity, for breaking camouflage by increasing the effective

spacing between the viewer’s two eyes to almost a meter.)

f (focal length)

d=fb/(a+p)
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Camera calibration

Camera parameters:

* 6 degrees-of-freedom in space (3 spatial coordinates X,Y,Z and 3
Euler rotation angles)

* Focal length.

Relative orientation:

* Base of separation

* Alignment in space

« Difference in focal length

* Rotation around each camera's optical axis

Dr Chris Town

Camera calibration

There are many other possible intrinsic camera calibration
parameters, such as

« skew coefficients accounting for non-orthogonality

« distortion coefficients representing radial and tangential
distortions of the lens

QaNAAs rpT
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The Correspondence Problem

Features (pixels, edge responses, SIFT features etc.) in the two
images need to be matched

If each image has N features, then there are NA2 possible
pairings

However, the number of potential pairings is
N x (N-1) x (N-2) ... = N!
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Stereo vision

Triangulate on two images of the
same point to recover depth.
d — Feature matching across views
— Calibrated cameras

Left Right

Matching correlation
windows across scan lines

| Slide credit-David lowe Dr Chris Town

Simplest Case: Rectified Images

* Image planes of cameras are parallel.
* Focal points are at same height.
* Focal lengths same.

* Then, epipolar lines fall along the horizontal scan lines of the
images

* We will assume images have been rectified so that epipolar lines
correspond to scan lines
— Simplifies algorithms
— Improves efficiency

| Slide credit-David lowe Dr Chris Town




Essential Matrix and Epipolar Lines

Epipolar constraint: if we observe point p in
one image, then its position p’ in second image
must satisfy this equation.

p/TEp — 0

ETp is the coordinate vector representing the
epipolar line for point p

~J

Ep' is the coordinate vector representing the
epipolar line for point p’

Dr Chris Town

Slide credit: K,

The epipolar constraint

epipolar line epipolar line

\I I/

* Epipolar Constraint
— Matching points lie along corresponding epipolar lines
— Reduces correspondence problem to 1D search along conjugate epipolar lines
— Greatly reduces cost and ambiguity of matching

Dr Chris Town

Slide credit: David Lowe,

Recap: Stereo Image Rectification

* Inpractice, itis
convenient if image
scanlines are the
epipolar lines.

e Algorithm

— Reproject image planes onto a common
plane parallel to the line between optical
centers

— Pixel motion is horizontal after this transformation

— Two homographies (3x3 transforms), one for each
input image reprojection

Dr Chris Town

1000 &2, Zhang, Compouting Rectifying jes for Stereg Vision, CYPR'99

Motion information

e For stereo vision, we need to solve the Correspondence Problem for two
images simultaneous in time but acquired with a spatial displacement.

For motion vision, we need to solve the Correspondence Problem for two
images coincident in space but acquired with a temporal displacement.

The object’s spatial “disparity” can be measured in the two image frames
once their backgrounds have been aligned. This can be calibrated to
reveal motion information when compared with the time interval, or depth
information when compared with the binocular spatial interval.
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Motion information

Among the challenging requirements of motion detection and inference are:

—

. Need to infer 3D object trajectories from 2D image motion information.

[}

. Need to make local measurements of velocity, which may differ in different
image regions in complex scenes with many moving objects, Thus, a
velocity vector field needs to be assigned over an image.

w

Need to disambiguate object motion from contour motion, so that we can
measure the velocity of an object regardless of its form.

=~

Need to measure velocities regardless of the size of the viewing aperture in
space and in time (the spatial and temporal integration windows). This
is known as the aperture problem.

S48

. It may be necessary to assign more than one velocity vector to any given
local image region (as occurs in “motion transparency”)

6. We may need to detect a coherent overall motion pattern across many

small objects or regions separated from each other in space.

Dr Chris Town

The Aperture Problem

Perceived motion

Dr Chris Town

Slide credit: Syetlanalazebnik
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The Aperture Problem

\ Actual motion

The Barber Pole lllusion

/.

http://en.wikipedia.org/wiki/Barberpole_illusion

slide credit: Svetlanalazebnik Dr Chris Town slide credit: Svetlanalazebnik Dr Chris Town
The Barber Pole lllusion The Barber Pole I“us|on
1
http://en.wikipedia.org/wiki/Barberpole_illusion
Dr Chris Town Dr Chris Town

Slide credit: Svetlana lazebnik

e Automated motion analysis generally limited to opaque and solid
objects

e Challenges: flocks of birds, clouds, vapours, waves, fire, the wind
in the willows...

Dr Chris Town

Motion and Perceptual Organisation

* Even “impoverished” motion data can evoke a strong percept

Dr Chris Town

Slide credit: Syetlanalazebnik
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Video

* Avideo is a sequence of frames captured over time

* Now our image data is a function of space
(x, y) and time (t)

I(x,y,0)

Dr Chris Town

Slide credit: Svetlana lazebnik

Motion Estimation Techniques

* Direct methods

— Directly recover image motion at each pixel from spatio-temporal image
brightness variations

— Dense motion fields, but sensitive to appearance variations
— Suitable for video and when image motion is small

* Feature-based methods

— Extract visual features (corners, textured areas) and track them over
multiple frames

— Sparse motion fields, but more robust tracking
— Suitable when image motion is large (10s of pixels)

Dr Chris Town

Slide credit; Steve Seit;

Motion Field and Parallax
P(t+dt
* P(¢)is a moving 3D point P(t) Y, ()
* Velocity of scene point:

V =dP/d¢t
o p() = (x(£), (1)) is the

projection of P in the image.

* Apparentvelocity Vin the
image: given by components

v, = dx/dt and v, = dy/dt

* These components are known
as the motion field of the
image.

Dr Chris Town

Slide credit: Svetlana lazebnik

Optical Flow

* Definition: optical flow is the apparent motion of brightness
patternsin the image.

* Ideally, optical flow would be the same as the motion field.

* Have to be careful: apparent motion can be caused by lighting
changes without any actual motion.
— Think of a uniform rotating sphere under fixed lighting vs. a stationary
sphere under moving illumination.
N NP
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Figure hu;:;, The optical flow s not always equal to the motion fild.
Change, yot the ooy otating undor constant, illumination-the image d
choge By:uwj:;uo;;gald s nonzero. Tn (b) a fixed sphore is illaminat
shading in the image changes, yet the motion feld i
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Slide credit; Svetlana lazebnik

Optical Flow Field

Image irradiance at time 7

and location x=(x, y)

I(x,y,t)

#(x,y) Horizontal component

v(x, y) Vertical component

Dr Chris Town

1M, Black

Estimating Optical Flow

./ .\ *
M I ° L]
1(x,y,t-1) 1(x.,1)

* Given two subsequent frames, estimate the apparent motion
field u(x,y) and v(x,y) between them.

* Keyassumptions

— Brightness constancy: projection of the same point looks the same in
every frame.

— Small motion (temporal coherence): points do not move very rapidly.
— Spatial coherence: points move like their neighbors.

Dr Chris Town

Slide credit: Syetlanalazebnik
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Spatial Coherence Temporal Persistence

/ s
Bl N/
‘ﬂ’\\\_ T
,/\ 7 g
sutice N A /
Image Plane
Assumption

Neighboring points in the scene typically belong to the same
surface and hence typically have similar motions.

* Since they also project to nearby points in the image. we expect
spatial coherence in image flow.

Assumption:

The unage motion of a surface patch changes gradually over time.

M. Black Dr Chris Town M. Black Dr Chris Town
) ) ) The Brightness Constancy Constraint
Optical flow constraint (also known as Brightness
Constancy Constraint) I(x + u’ y + v’ [+ 1) = I(x’ y’ l‘)
Brightness Constancy (assumption)
Taylor Series Expansion
Assume u, v, dt small
dx=u, dy =v,dr=1 Assume brightness varies
smoothly with x, y, t
Jd d Jd
1(x,y,0)+dx—1(x, y,t)+dy—I(x,y,t)+dt—1(x,y,t)+€
ox ay or
I(x+u,y+v,t+1)=1(x,y,1)
(assumption)
Dr Chris Town M Black Dr Chris Town
The Brightness Constancy Constraint

I(x+uay+vat+1)zl(xayat) Notation
Ix+u,y+v,t+1)—1(x,y,t) =0

" " . Tu+1yv+1,=0

TOS) e LG+ dy TG0+ 106, 3) = TO0) =0

Divide through by dt

d J 0
ey 0 +v— I, y,0) +—1 H=0
e (x,y, )+vay (., )+at (x, ,1)

“ofi] L]
Lu - Livt Iy =0

MBlack Dr Chris Town

MBlack Dr Chris Town




The Brightness Constancy Constraint

Iou+tl -v+I,=0
* How many equations and unknowns per pixel?
— One equation, two unknowns

* Intuitively, what does this constraint mean?

VI-(u,v)+1, =

* The component of the flow perpendicular to the gradient (i.e.,
parallel to the edge) is unknown

gradient

If (4, V) satisfies the equation,
sodoes (utu’, vtv')if  VI-(u',v')=0 u'v’)

(utu’ vtv’)

79 Dr Chris Town

Intensity Gradient Models

Assume that the local time-derivative in image intensities at a point,
s related to the local spatial gradient in image

across many image frame
intensities because of object velocity @
Al(z,y,t)

ot
Then the ratio of the local image time-derivative to the spatial gradient is
an estimate of the local image velocity (in the direction of the gradient).

=5-Vi(z,y,t)

Dr Chris Town

Slide credit: Svetlana lazebnik

Dynamic Zero-Crossing Models

Measure image velocity by first finding the edges and contours of objects
(using the zero-crossings of a blurred Laplacian operator!), and then take
the time-derivative of the Laplacian-Gaussian-convolved image:

) !
7% [VZG,,(.T. y) * I(z, y.t)]

in the vicinity of a Laplacian zero-crossing. The amplitude of the result
is an estimate of speed, and the sign of this quantity determines the di-
rection of motion relative to the normal to the contour.

Also known as the “Hildreth model”, after Ellen Hildreth

Dr Chris Town

Dynamic Zero-Crossing Models

Dr Chris Town

Spatio-Temporal Correlation Models

Image motion is detected by observing a correlation of the local image
signal I(x,y,t) across an interval of space and and after an interval of
time 7. Finding the pair of these intervals which maximises the correla-
tion between I(x,y.t) and I(x — v,7,y — vy7,t — 7) determines the two
components of image velocity v, and v, which we desire to know.

argmax / //I(I.y‘ t) - Iz —vr, y—vyr, t —7) dz dy di
JoJu St

-
Medula \\ £
g L

Lobula Plate

Detailed studies of fly neural mechanisms (above) for motion detection

and visual tracking led to elaborated correlation-based motion models. Dr Chris Town

Spatio-Temporal Spectral Models

It is possible to detect and measure image motion purely by Fourier
means. This approach exploits the fact that motion creates a covariance
in the spatial and temporal spectra of the time-varying image I(z,y.t),
whose three-dimensional (spatio-temporal) Fourier transform is defined:

F(we, wy, wr) /// ’L(“zr“yy*”'t)dldy([t

In other words, rigid image motion has a 3D spectral consequence: the lo-
cal 3D spatio-temporal spectrum, rather than filling up 3-space (w,, wy, w;),
collapses onto a 2D inclined plane which includes the origin. Motion de-
tection then occurs just by filtering the image sequence in space and in
time, and observing that tuned spatio-temporal filters whose centre fre-
quencies are co-planar in this 3-space are activated together. This is a
consequence of the Spectral Co-Planarity Theorem, which states that
translational image motion of velocity ¥ has a 3D spatio-temporal Fourier
spectrum that is non-zero only on an inclined plane through the origin of
frequency-space. Spherical coordinates of the unit normal to this spectral
plane correspond to the speed and direction of motion.

Dr Chris Town
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Theorem: Translational image motion of velocity Vv has a 3D spatio-
temporal Fourier spectrum that is non-zero only on an inclined plane through
the origin of frequency-space. Spherical coordinates of the unit normal to this
spectral plane correspond to the speed and direction of motion.

Let I(r,y,t) be a continuous image in space and time.
Let F(ws,wy,w) be its 3D spatio-temporal Fourier transform:
Flwg, wy,wy) = / /; -LI(T. y, t)e~ (Wertenyet) drdy dt.
Let ¥V = (v,,v,) be the local image velocity.
Uniform motion v implies that for all time shifts .,
I(z,y,t) = I(z — vote, ¥ — vylo, t — 1p).

Taking the 3D spatio-temporal Fourier transform of both sides., and
applying the shift theorem, gives
Watato + wytyto + wite)

Py ) = 1 Pl ).

Dr Chris Town

Taking the 3D spatio-temporal Fourier transform of both sides, and
applying the shift theorem. gives

F(wg, g ) = e~ i(Wststo +wyvyto + ‘“’"to)F(wI, Wy, ).

The above equation can only be true if F(w,,wy,w;) = 0 everywhere
the exponential term doesn’t equal 1.

This means F(wy,wy,w;) is non-zero only on the 3D spectral

plane
QED.
The spherical coordinates (6,9, 1)

o= tan! (w/\/u2 +u2)

6 = tan~! (wy/w,)

of the inclined spectral plane’s unit normal are determined by v and
correspond to the speed (¢) and direction () of motion:

6 =tan™! (vy/vz) Dr Chris Town
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