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Computer Vision
Computer Science Tripos Part II
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Texture

What defines a texture?

Trevor Darrell Dr Chris Town

Includes: more regular patterns

Trevor Darrell

Dr Chris Town

Includes: more random patterns

Trevor Darrell Dr Chris Town

Scale: objects vs. texture

Often the same thing in the world can occur as 
texture or an object, depending on the scale we 
are considering.
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Inferring surface orientation from texture

-> the assumption of uniformity constrains the problem

Dr Chris Town

Inferring surface orientation from texture

Dr Chris Town

Inferring surface orientation from texture

Dr Chris Town
The Visual Cliff, by William Vandivert, 1960

Inferring surface orientation from texture

Dr Chris Town

Texture
Texture is defined by the existence of certain statistical 
correlations across the image.
Examples:
• quasi-periodic undulations (waves, ripples, folds in clothing)
• spots, speckles
• stripes, dashes

Many natural textures can appear to be almost fractal, i.e. self-
similar across different scales.

The unifying notion in all of these examples is quasi-periodicity, 
or repetitiveness, of some features.

Dr Chris Town

So, What Scale to Choose?

• It depends on what we’re looking for…

• Too fine a scale… can’t see the forest for the trees.
• Too coarse a scale… can’t tell the maple from the cherry.

Slide credit: K. Grauman
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Texture
• Textures are made up of repeated sub-elements

• Representation:
– find the sub-elements, and represent their statistics

• But what are the sub-elements, and how do we find and 
characterise them?

Dr Chris Town

Texture
Fourier methods: capture quasi-periodicity at different scales and 
orientation, but have non-localised (global) response

Gabor wavelets: spatially localised, so we can analyse texture in 
terms of local spectral analysis

Dr Chris Town

Magnitude of the Fourier Transform
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Magnitude of the Fourier Transform encodes unlocalised information
about dominant orientations and scales in the image.
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A simple texture descriptor

A.Torralba Dr Chris Town

Man-made environments Natural environments

Spectral signature of man-made environments Spectral signature of natural environments

Oliva et al (99), Oliva & Torralba (01)

Statistics of Scene Categories

Look at Mumford’s work for models…

Dr Chris Town

Gist descriptor

8   orientations
4   scales

x 16 bins
512   dimensions

• Apply oriented Gabor filters
over different scales
• Average filter energy
in each bin

M. Gorkani, R. Picard, ICPR 1994; Walker, Malik. Vision Research 2004;  Vogel et al. 2004;
Fei-Fei and Perona, CVPR 2005; S. Lazebnik, et al, CVPR 2006; …

Oliva and Torralba, 2001

Dr Chris Town

Example visual gists

Global features (I) ~ global features (I’) Oliva & Torralba (2001)
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Texture characterisation using 
filters

Dr Chris Town

Region segmentation 

-> perceptual grouping

Dr Chris Town

Region segmentation using Gabor Wavelets

Dr Chris TownComputer Vision - A Modern Approach; D.A. Forsyth

Oriented (or “steerable”) pyramids

• Laplacian pyramid is orientation independent
• Apply an oriented filter to determine orientations at each layer

– this represents image information at a particular scale and orientation

Dr Chris Townhttp://www.cns.nyu.edu/ftp/eero/simoncelli95b.pdf Simoncelli and Freeman, ICIP 1995

But we need to get 
rid of the corner 
regions before 
starting the recursive 
circular filtering

Dr Chris Town

Reprinted from “Shiftable MultiScale Transforms,” by Simoncelli et al., IEEE Transactions
on Information Theory, 1992, copyright 1992, IEEE

Computer Vision - A Modern Approach; D.A. Forsyth
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Steerable filters
“Steerability”-- the ability to synthesise a filter of any orientation from a 
linear combination of filters at fixed orientations.
The basis functions of the steerable pyramid are directional derivative
operators, that come in different sizes and orientations.

Filter Set:
0o 90o Synthesized 30o

Response:
Raw Image

Taken from:
W. Freeman, T. Adelson, “The Design 
and Use of Sterrable Filters”, IEEE 
Trans. Patt, Anal. and Machine Intell., 
vol 13, #9, pp 891-900, Sept 1991

Dr Chris Town

Texture representation

• Form an oriented pyramid (or equivalent set of responses to 
filters at different scales and orientations).

• Square the output (modulus)

• Take statistics of responses
– Mean of each filter output (e.g. are there lots of spots?)
– Standard deviation of each filter output (e.g. are the spots of similar size?)
– Mean of one scale conditioned on other scale having a particular range of 

values (e.g. are the spots in straight rows?)

Computer Vision - A Modern Approach; D.A. Forsyth

Dr Chris Town

Texture synthesis

• Model texture as generated from random process.

• Discriminate by seeing whether statistics of two processes seem 
the same.

• Synthesize by generating image with same statistics.

Computer Vision - A Modern Approach; D.A. Forsyth Dr Chris Town

Texture synthesis

Dr Chris Town Dr Chris Town

Statistical in-fill

Slide from Alyosha Efros, ICCV 1999
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Texture analysis

Input texture

(histogram)

Wavelet decomposition (steerable pyr) (histogram)

The texture is represented as a collection of 
marginal histograms.

(Steerable pyr; Freeman & Adelson, 91)

Dr Chris Town

Texture synthesis

Input texture

(histogram)

(histogram)
Heeger and Bergen, 1995

Dr Chris Town

Inferring Object Colour

Dr Chris Town

Inferring Object Colour

Dr Chris Town

Measuring 

Search for highly specular (shiny, metallic, glassy) regions in an 
Then we could infer O by dividing R by I.

Inferring Object Colour

Problems:
• We may not find any specular surfaces in the image
• Most materials are not purely specular(e.g. metals which 
have a brassy colour)
• Not robust, too dependent on highly localised
measurements

Dr Chris Town

Colour Constancy

These images show a bowl of fruit photographed in three lighting conditions:
• artificial light (left)
• hazy daylight (middle) 
• clear blue sky (right)

Notice the marked variation in colour balance caused by the spectral properties of 
the illuminant. We are not normally aware of this variation because colour
constancy mechanisms discount illumination effects

http://www.psypress.co.uk/mather/resources/topic.asp?topic=ch12-tp-04
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Colour Cube Illusion

D. Purves, R. Beau Lotto, S. Nundy “Why We See What We do,” American Scientist Dr Chris Town

Colour Constancy in Goldfish

In David Ingle's experiment, a goldfish has been trained to swim to a patch of a given
color for a reward—a piece of liver. It swims to the green patch regardless of the
exact setting of the three projectors' intensities. The behavior is strikingly similar to
the perceptual result in humans.

http://neuro.med.harvard.edu/site/dh/b45.htm

Dr Chris Town

Colour Constancy
Possible explanations:

Local colour contrast— cone excitation level of one surface relative to another 
remains constant when both surfaces experience the same change in illumination. 
-> Relative cone excitation levels are invariant ratios

Colour adaptation—reduces the contribution from the source illumination by 
lowering activity in the most highly active cone classes.

Global contrast—global spectral changes generally represent changes in the 
illuminant; localised differences usually correspond to reflectance differences.

Range of reflected spectrum—gives some indication of the breadth of the 
illuminating spectrum.

Colour constancy is not perfect (83% accuracy), and the most powerful cue to 
constancy is local colour contrast.

http://www.psypress.co.uk/mather/resources/topic.asp?topic=ch12-tp-04 Dr Chris Town

Retinex
E.H. Land, J.J. McCANN - Journal of the Optical society of America, 1971

Dr Chris Town

Retinex

Dr Chris Town

Retinex

Reflectance tends to be constant across space except for abrupt 
changes at the transitions between objects. 

Thus a reflectance change shows itself as step edge in an image, 
while illuminance changes gradually over space. 

By this argument one can separate reflectance change from 
illuminance change by measuring the response to spatial 
derivatives.
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Retinex

= x

From M. Tappen,

Again, we are trying to solve an ill-posed problem

Dr Chris Town

Retinex

log 

 [1 -1]

 [1 -1]T

From M. Tappen, PhD

From M. Tappen,

Dr Chris Town

What Is Stereo Vision?

• Generic problem formulation: given several images of the same 
object or scene, compute a representation of its 3D shape

Slide credit: Svetlana Lazebnik, Steve Seitz Dr Chris Town

Stereo

Dr Chris Town47

Pinhole Camera

Source: Forsyth & Ponce Dr Chris Town
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Camera parameters:
• 6 degrees-of-freedom in space (3 spatial coordinates X,Y,Z and 3 
Euler rotation angles)
• Focal length.

Relative orientation:
• Base of separation
• Alignment in space
• Difference in focal length
• Rotation around each camera's optical axis

Camera calibration

Dr Chris Town

There are many other possible intrinsic camera calibration 
parameters, such as
• skew coefficients accounting for non-orthogonality
• distortion coefficients representing radial and tangential 
distortions of the lens

Camera calibration

Dr Chris Town

The Correspondence Problem

Features (pixels, edge responses, SIFT features etc.) in the two 
images need to be matched

If each image has N features, then there are N^2 possible 
pairings

However, the number of potential pairings is 
N x (N-1) x (N-2) … = N!

Dr Chris Town

Stereo vision

Triangulate on two images of the 
same point to recover depth.
– Feature matching across views
– Calibrated cameras

Left Right

baseline

Matching correlation
windows across scan lines

depth

Slide credit: David Lowe Dr Chris Town

Simplest Case: Rectified Images

• Image planes of cameras are parallel.
• Focal points are at same height.
• Focal lengths same.
• Then, epipolar lines fall along the horizontal scan lines of the 

images

• We will assume images have been rectified so that epipolar lines 
correspond to scan lines
– Simplifies algorithms
– Improves efficiency

Slide credit: David Lowe
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Essential Matrix and Epipolar Lines

pE  is the coordinate vector representing the 
epipolar line for point p’

pE is the coordinate vector representing the 
epipolar line for point p

0Epp
Epipolar constraint: if we observe point p in 
one image, then its position p’ in second image 
must satisfy this equation. 

Slide credit: K. Grauman Dr Chris Town

The epipolar constraint

• Epipolar Constraint
– Matching points lie along corresponding epipolar lines
– Reduces correspondence problem to 1D search along conjugate epipolar lines
– Greatly reduces cost and ambiguity of matching

epipolar plane epipolar lineepipolar line

Slide credit: David Lowe

Dr Chris Town

Recap: Stereo Image Rectification

• In practice, it is 
convenient if image 
scanlines are the 
epipolar lines.

• Algorithm
– Reproject image planes onto a common

plane parallel to the line between optical 
centers

– Pixel motion is horizontal after this transformation
– Two homographies (3x3 transforms), one for each 

input image reprojection

C. Loop & Z. Zhang, Computing Rectifying Homographies for Stereo Vision. CVPR’99 Dr Chris Town

Motion information

Dr Chris Town

Motion information

Dr Chris Town

The Aperture Problem

Perceived motion

Slide credit: Svetlana Lazebnik
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The Aperture Problem

Slide credit: Svetlana Lazebnik

Actual motion

Dr Chris Town

The Barber Pole Illusion

http://en.wikipedia.org/wiki/Barberpole_illusion

Slide credit: Svetlana Lazebnik

Dr Chris Town

The Barber Pole Illusion

http://en.wikipedia.org/wiki/Barberpole_illusion

Slide credit: Svetlana Lazebnik Dr Chris Town

The Barber Pole Illusion

Dr Chris Town

• Automated motion analysis generally limited to opaque and solid
objects
• Challenges: flocks of birds, clouds, vapours, waves, fire, the wind 
in the willows…

Dr Chris Town

Motion and Perceptual Organisation

• Even “impoverished” motion data can evoke a strong percept

Slide credit: Svetlana Lazebnik
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Video

• A video is a sequence of frames captured over time
• Now our image data is a function of space 

(x, y) and time (t)

Slide credit: Svetlana Lazebnik Dr Chris Town

Motion Estimation Techniques

• Direct methods
– Directly recover image motion at each pixel from spatio-temporal image 

brightness variations
– Dense motion fields, but sensitive to appearance variations
– Suitable for video and when image motion is small 

• Feature-based methods
– Extract visual features (corners, textured areas) and track them over 

multiple frames
– Sparse motion fields, but more robust tracking
– Suitable when image motion is large (10s of pixels)

Slide credit: Steve Seitz

Dr Chris Town

Motion Field and Parallax

• P(t) is a moving 3D point
• Velocity of scene point: 

V = dP/dt
• p(t) = (x(t),y(t)) is the 

projection of P in the image.

• Apparent velocity v in the 
image: given by components 
vx = dx/dt and vy = dy/dt

• These components are known 
as the motion field of the 
image.

p(t)
p(t+dt)

P(t)
P(t+dt)

V

v

Slide credit: Svetlana Lazebnik Dr Chris Town

Optical Flow
• Definition: optical flow is the apparent motion of brightness 

patterns in the image.
• Ideally, optical flow would be the same as the motion field.
• Have to be careful: apparent motion can be caused by lighting 

changes without any actual motion.
– Think of a uniform rotating sphere under fixed lighting vs. a stationary 

sphere under moving illumination.

Slide credit: Svetlana Lazebnik

Dr Chris TownM. Black Dr Chris Town

Estimating Optical Flow

• Given two subsequent frames, estimate the apparent motion 
field u(x,y) and v(x,y) between them.

• Key assumptions
– Brightness constancy:  projection of the same point looks the same in 

every frame.
– Small motion (temporal coherence):  points do not move very rapidly.
– Spatial coherence: points move like their neighbors.

I(x,y,t–1) I(x,y,t)

Slide credit: Svetlana Lazebnik
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Optical flow constraint (also known as Brightness 
constancy constraint)

Dr Chris Town

The Brightness Constancy Constraint

M Black

Taylor Series Expansion

Dr Chris Town

The Brightness Constancy Constraint

M Black Dr Chris TownM Black
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The Brightness Constancy Constraint

• How many equations and unknowns per pixel?
– One equation, two unknowns

• Intuitively, what does this constraint mean?

• The component of the flow perpendicular to the gradient (i.e., 
parallel to the edge) is unknown

79

0 tyx IvIuI
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(u,v)

(u’,v’)

gradient

(u+u’,v+v’)

If (u,v) satisfies the equation, 

so does (u+u’, v+v’) if 

Slide credit: Svetlana Lazebnik Dr Chris Town

Dr Chris Town

Also known as the “Hildreth model”, after Ellen Hildreth

Dr Chris Town

Dr Chris Town Dr Chris Town
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